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Abstract

The effect of a thin viscous fluid-mud layer on nearshore nonlinear wave-wave interactions is studied using a parabolic frequency-domain
nonlinear wave model, modified to incorporate a bottom dissipation mechanism based on a viscous boundary layer approach. The boundary-layer
formulation allows for explicit calculation of the mud-induced wave damping rate. The model performed well in tests based on laboratory
data. Numerical tests show that damping of high frequency waves occurs, mediated by "difference" nonlinear interactions. Simulations of
2-dimensional wave propagation over a mud "patch" of finite extent show that the wave dissipation causes significant downwave diffraction
effects.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction been routinely reported: 80% wave energy loss over only 2.6
wavelengths (Gade, 1958, laboratory experiments); more than

The propagation of ocean surface waves has been studied 90% energy loss across the 20-km wide shallow mudflats (Wells
intensively in the last few decades, particularly as numerical and Coleman, 1981, off the coast of Surinam); 95% incident
models of wave propagation over varying bathymetry have energy loss across 1.1 km-wide mudbanks (Mathew, 1992, off
become sufficiently skillful for use in operational forecasting, the coast of India), and so on.
engineering studies, etc. Both phase-resolving models via the Theoretical formulations of bed-induced wave dissipation
mild-slope (e.g. Berkhoff, 1972) or Boussinesq (e.g. Peregrine, are based on the assumption that wave motion reaches the
1967) equations, and phase-averaged models (e.g. Booij et al., bottom and interacts directly with bed sediments. The
1999), have been extensively validated for cases in which the approaches typically focus on a single (dominant) physical
bottom composition is not a significant concern to the mechanism, defined by the bed state and composition. A
propagation characteristics (sandy beaches). Wave-bottom number of physical mechanisms for wave dissipation over
frictional effects are typically of secondary importance in muddy seabeds have been proposed over time, based on
sandy environments. On spatial scales typical of surf zones on different models of sediment theology. The diversity of mud
sandy beaches, wave breaking tends to overwhelm bottom states and corresponding beds include poro-elastic solids
friction dissipation rates. Over larger scales (100-km wide (Yamamoto et al., 1978; Yamamoto and Takahashi, 1985),
North Carolina shelf), swell energy loss rates of 50-75% have viscous Newtonian fluids (Dalrymple and Liu, 1978; Ng, 2000),
been observed, attributed to the interaction of waves with Bingham fluids (Mei and Liu, 1987), generalized Voight solids
bottom ripples (Ardhuin et al., 2002; Ardhuin et al., 2003). (Macpherson, 1980; Hsiao and Shemdin, 1980; Jiang and

By comparison, the strength of dissipation processes specific Mehta, 1995, 1996), and non-Newtonian fluids (Chou ct al.,
to wave propagation in fine-grained, cohesive sedimentary 1993; Foda et al., 1993). With the exception of fluidization
environments is well known. Extreme dissipation rates have processes (Foda et al., 1993; DeWit, 1995), these models focus

on a single, well-defined mud phase. Although the models

Corresponding author. Tel.: +1 979 862 3511. predict greatly differing damping effects (Lee, 1995), each may
E-mail address: jkaihatu(civil.tamu.edu (J.M. Kaihatu). be applicable in some situations (Mei and Liu, 1987).
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All the above mechanisms require direct interaction between In this study we incorporate a mud-induced energy
the wave motion and sediment bed, and thus are essentially dampening mechanism into a phase-resolving nonlinear (one-
long-wave dissipation mechanisms. On time/spatial scales dimensional and parabolic two-dimensional) frequency domain
comparable to those of wave evolution on a sandy beach model for surface waves. One of the attractions of the phase-
(102 T or 102A, with T and . characteristic wave length and resolving approach is the direct correspondence between pro-
period), direct wave-bed interaction is arguably the dominant perties of the model realizations and data from various remote
dissipation mechanism outside the surf zone. However, many sensing platforms (e.g. interferometric synthetic aperture radar,
important cohesive sediment coasts, (e.g. Louisiana and surface-mapping lidar, video). This offers great potential for
Mississippi Bights, USA), exhibit morphological characteristics data assimilation and inverse modeling to deduce aspects of the
which allow wave evolution and dissipation on much larger bottom topography and sediment heterogeneity over a large
scales. For example, on the inner shelf fronting Atchafalaya area. We first compare the resulting model to data from a lab-
(Louisiana, USA), the 10-m isobath is in some places approxi- oratory experiment, then demonstrate some interesting proper-
mately 50 km offshore. Mediated, indirect wave-sediment ties of the model in one- and two-dimensional scenarios.
energy exchange processes, typically also second order in The model developed here describes mud-induced surface
magnitude, can become important over such scales. Examples wave dissipation and nonlinear processes but does not account
are short-wave dissipation, and processes at the interface for the complexities of the coupling between sediment and wave
between a fluid-mud layer and the upper column, such as states (feedback between waves and fluid mud layer). However,
surface-interface wave interactions (Foda, 1989; Hill and Foda, our focus at the present is on a wave model which can be
1998; Jamali et al., 2003), or Kelvin-Helmholtz/Holmboe-type applied in general situations of wave propagation over muddy
lutocline instabilities (e.g. Mehta and Srinivas, 1993). bottoms, rather than a detailed investigation of the processes

A series of recent field experiments (Sheremet and Stone, at the interface. This is not unlike many previous studies de-
2003; Sheremet et al., 2005) on the Atchafalaya shelf have tailing the representation of wave breaking dissipation into
raised questions about the possible role of surface wave-wave a surface wave model by the inclusion of an additional term
interactions in mediating short wave dissipation in cohesive (e.g. Kirby and Dalrymple, 1986).
sedimentary environments. The observations showed unexpect-
ed short-wave damping in areas with cohesive bed sediments, in 2. Viscous dissipation mechanism of Ng (2000)
contrast to normal (negligible) short-wave damping over areas
with sandy bottoms. Sediment monitoring devices subsequently The dispersion relation for a linear system can be generically
deployed at the same muddy site showed that strong spectrum- written as:
wide wave damping coincided with formation of a fluid-mud
layer with sediment concentrations of over 10 kg/M2. 2(co, K, h) = 0, (1)

Nonlinear wave-wave interaction processes should be
important over a 20-km shallow (15-20 m depth) muddy shelf, which relates wavenumber K to water depth h and frequency w)
On a typical sandy beach (slope- 1%) near-resonant 3-wave (Whitham, 1974). For linear dissipative systems the solutions K
interactions are known to cause significant energy transfers of the dispersion relation (1) are complex, and are typically
over a few wavelengths (Freilich and Guza, 1984; Elgar and found by a laborious search in the complex plane (e.g. the
Guza, 1985; Agnon et al., 1993; Kaihatu and Kirby, 1995; Agnon complex secant method used by Dalrymple and Liu, 1978). The
and Sheremet, 1997, 2000; Herbers and Burton, 1997 and many accuracy of the calculation of the complex roots is also an
others). Strong phase correlations build up between spectral important concern, particularly when incorporating the algo-
components, and the wave field is no longer Gaussian. However, rithms into a numerical model with nonlinear terms which are
the role of wave nonlinearity in the evolution of wave spectra sensitive to the nature and degree of dissipation, as has been
in environments characterized by strong (frequency dependent) observed with surf zone breaking (Kirby and Kaihatu, 1996).
damping is not well understood. Jiang and Zhao (1989) and Jiang Numerical applications of wave modeling require an efficient
et al. (1990) treated the problem of solitary and cnoidal wave and robust approach for calculating these roots, particularly in
propagation (respectively) over fluid-mud seabeds, using several the case of nonlinear models which spend significant compu-
mud layers of different viscosities to enact the damping and tational resources on the calculation of nonlinear terms. Here,
seeking analytical closed-form solutions. Sheremet et al. (2005) we investigate the simplified approach developed by Ng (2000),
incorporated the mud dissipation model of Jiang and Mehta which has the potential to approximate the physics of mud-
(1 995) into the nonlinear ID triad shoaling model of Agnon et al. induced dissipation well enough to allow reliable calculation of
(1993) and tested the hypothesis of Sheremet and Stone (2003) the dissipative modes K.
concerning the dampening of high frequency waves. Their Laboratory observations by Gade (1958) and numerical
numerical simulations based on nonlinear wave propagation simulations based on the model developed by Dalrymple and
models suggest that nonlinear energy transfer within the wave Liu (1978) suggest that mud-induced wave dissipation is
spectrum may be important, perhaps providing the coupling maximized when the mud layer is approximately 1.5 times the
between the short- and long-wave spectral bands, allowing energy boundary layer depth in the viscous fluid, thus setting up the
to flow toward long waves, where it can be efficiently dissipated requisite scales for a boundary layer solution. The idea was
via direct wave-bottom interaction, pursued by Ng (2000), who formulated the viscous dissipation
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mechanism as a boundary layer reduction of the Dalrymple and The solutions ((4)-(5)) is a function of nondimensional pa-
Liu two-layer fluid model. Assuming that the depth of the mud rameters: y=pa/p., where p is the density; C6,,= (v1v,,w)";
layer is comparable to the mud layer's Stokes boundary layer and d=d/m. The subscript w refers to water. The real part of the
thickness implies that second order correction k2 represents the modification to the

wavelength due to the viscous mud. The total real part of the
ka = kdm = k,, << 1, (2) wavenumber k is determined as:

where k=Re(K), a is the wave amplitude, dm the depth of the k = k + Re(k2 = k - Re(B)kl
mud layer, and ,5 = / / is the Stokes boundary layer thick- sinhkh coshkih + kh
ness, where v is the kinematic viscosity and Y is the angular
frequency of the wave. The subscript m denotes mud. As a The solution ((4)-(5)) is remarkable in that mud effects are
result of this scaling, the wavenumber of a dissipative mode can explicitly expressed in terms of the first order, nondissipative,
be written as real, wavenumber ki.

The characteristics of the dissipation (6) had been dis-
K = ki + k2, with I k I>jk21, (3) cussed by Ng (2000, see Figs. 2 and 3); however the effect of

a thin viscous layer of mud on the wavenumber k was not
where the leading order term k, is real and satisfies the non- similarly explored by Ng (2000). This companion effect of
dissipative dispersion relation mud on the real part k of the wavenumber is important for

nonlinear effects in wave spectra since the wavenumbers
CO2 = gki tanh k, h, (4) determine the amount of detuning away from resonance, and

thus directly affect energy transfer within the wave spectrum.
written in the absence of any fluid-mud layer. The second order Fig. 1 shows the effect of the mud on real part of the
correction k2 is complex and incorporates the effect of the fluid wavenumber for two different values of C (C=10) and
mud. For k2, Ng (2000) obtains C= 100), where the density ratio y=0.9; the boundary layer

scale 6. was kept constant while the mud layer depth d., was
Bk) varied with the dimensionless depth d. Clearly the increasing

sinh k, h cosh k, h + k, h mud layer causes a decrease in the wavenumber k relative to

that with no mud. The convention typically used in theories of
The imaginary part of the wavenumber k2 is the damping rate: wave propagation over mud has the mud layer adding to the

total water depth; the wave experiences an increase in water

D = Im(k2) =m(B)kj (6) depth with the addition of the mud layer, and the resulting
() sinh khcosh k, hki h decrease in wavenumber is similar to an inverse shoaling

effect. The degree to which the wavenumber decreases is
where B is a complex coefficient dependent on the mud properties. A comparison to a similar

figure shown in Dalrymple and Liu (1978; Fig. 3) reveals that

Re(B) = ki 6m(Bi - B2) + -yk,dm, (7) the present theory has a smaller rate of wavenumber decrease
2B 3  to increase of d. This is sensible since the validity of the

boundary layer approximation in Ng (2000) decreases with
Im(B) = ki 6m(BI + B2) (8) increasing d.

2B3  () Fig. 2 shows the variation of (6), normalized by the
maximum dissipation D,,, for each parameter set, with kh.

with This normalization is done to help visualize the shape of the
frequency dependence and reveal the similarity across mud

B, = -y(-2y2 + 2- - 1 - C2 )sinh d coshd _Y2C parameter sets; the value of D,, for these parameters actually
" (cosh 2 J +sinh 2 d)-(_Y 1)2 varies over three orders of magnitude. For this analysis, the

- water depth h= I m. We use y=(0.5,0.9) and C=(10,100). For
" (cosh 2 Jcos j+sinh 2 dsin2 j) - 2-y(1 - -y) C=10 we set dm=O.02 m, and for (=100 we use dm=0.2 m.

x (C cosh J +ysinh a) cosa, (9) This allows d to have the same values over the range of kh for
all mud parameters used. Despite the differences in mud
parameters, the curves have a very similar shape and maxima

B2 = -y(-2 2 + 2y - I + C)sincosd-2yj(I - -y) which are located near kh -0.88. All curves are characterized
x (Csinhjd+-ycosh d)sinj, (10) by a rapid rise from minimal dissipation for kh <0.88 and a

relatively slow fall to zero damping with kh >0.88. This is
because waves in very shallow water (low kh) will have

B3 = (Ccosh +ysinhdj) 2cos2 a+(Csinhaj+-ycosh j)2sin2j. mud boundary layer thicknesses 6, which are greater than
the depth of the mud layer (low a). Relatively little damping

(11) thus occurs. Conversely, waves in deeper water (high kh) will
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Fig. I. Effect of viscous mud layer on wavenumber. Solid line: C= 100, y = 0.9. Dashed line: C = 10, y = 0.9.

not be as influenced by the bottom, and thus also experience Kaihatu and Kirby (1995) derived the following parabolic
little damping. The damping appears to be at least 33% of equation for A,:
the maximum value in the range 0.1 < kh <2.4, encompass-
ing the upper end of the shallow water range (kh < /lO) A (kCCgand most of the intermediate depth range (70/10<kh<57r). 2i(CCg),n-2 - 2(kCCg)n(kn-k,)A, + i'CC'A,,

We note here that different values of d. will lead to a differ- aX

ent range of d over the range of kh considered. This will in a i?AC I R OIA_ (Ieif(k + k--- k)dx
turn lead to different values of kh at which the dissipation is + Dy \l.t .'y 4 4 Rni=
maximum. N-n --+2 SnjtAI*A.+leJ (kn+l kl kn) dx (14)

3. Numerical model for nonlinear wave transformation ± =(

over a viscous mud layer
where C is the phase velocity, Cg is the group velocity, and R

We now turn our attention toward the implementation of this and S are interaction coefficients
mechanism into a wave model. This is done as a superposition
of an added dissipation effect into the model, as previously Rn,l = g [oAknlk.-I + (k, + kn._)(o,._-kI + (okn-)(on]
noted. (0lO0n-1

We use the nonlinear model of Kaihatu and Kirby (1995), !-! + o,t...- + o .._) (15)
which is a parabolic frequency-domain mild-slope equation g

model with second-order nonlinear wave-wave interactions.
The free surface r is assumed to be expressible as: Sn, = g [o2wkk+ + (k+, - k)((On+kl + .,k+)wo]

(OI10n+I

11(x,y, t) = e e i(fkndx - (nt) + c.c (13) - ( - (OIOn+I + (O9n+) (16)

The wavenumber k is averaged in the y direction, and is a
where An is the complex amplitude of the free surface elevation, consequence of the parabolic approximation (Radder, 1979),
"c.c." denotes complex conjugate of the term in the square which in practical terms limits the obliquity of the wave with
brackets, and kn is the wavenumber associated with the radian respect to the x axis of the grid. Details of the derivation are
frequency w4n. With this and the boundary value problem for presented in Kaihatu and Kirby (1995) and not replicated here.
water waves (extended to second order in wave amplitude a), The primary advantage of the model is that the shoaling and
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Fig. 2. Dissipation D (normalized by the maximum) as a function of relative water depth kh. Water depth h= I m. Solid line: C= 10, y=0.9, d,.=0.02 m. Dashed line:
(= 100, y=0.9, d=0.2 m. Dotted line: C= 10, y=0.5, d.=0.02 m. Dash-dot line: C= 100, y=0.5, d==0.2 m.
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dispersion are determined by fully-dispersive linear theory, thus 4. Model results
overcoming the shallow water limitation of classical Boussinesq
type models (e.g. Freilich and Guza 1984; Liu et al., 1985). This section presents a number of consistency and model data
Since the equation is parabolic, numerical solution is easily comparison tests performed with the model (18) to ascertain the
undertaken via the Crank-Nicholson method, iterated to center effect of the mud on wave transformation. As a consistency
the nonlinear terms between the cross-shore grid points. The check, we first compare the model to laboratory data for a simple
process of parabolization reduces the computational effort, but case of wave propagation over a flat, muddy bottom. After
disallows processes which run backward through the domain confirming the performance of the model, we then use it to
such as back reflection. Kaihatu and Kirby (1995) showed that examine the physical nature of nonlinear wave propagation over
(14) compared well to laboratory data. The parabolic model was viscous muds. In particular, we analyze the effect of mud on
extended to wide angles of propagation by Kaihatu (2001). nonlinear energy transfer, focusing on the attenuation of high

Kaihatu and Kirby (1995) also used a one-dimensional frequency energy.
reduction of (14) for shoaling waves, and extended it into the
surf zone by the addition of a spectral dissipation term: 4.1. Comparison with laboratory data

A,, + (CCg)n A, + tAn - (17) Most of the existing field or laboratory data sets on wave
2CCg). 8 (kCCg) propagation over muddy sea beds (e.g. Gade 1958; Tubman and

[-1 Suhayda, 1976; Forristall and Reece, 1985; Jiang and Mchta,
x ZA,An-1elf(kt +k'- - k')dx 1995) focus on linear processes of narrow-spectrum long

1=1 waves. Their approach is based on the assumption that bottom
N-n k)dx] interaction is significant only for the long waves, which reach

+2 A,A+t,If(k"+l ICk - deep enough in the water column to interact directly with the
t=iI bottom. A number of field experiments were conducted

where a is the dissipation coefficient due to surf zone dissipation; recently, dedicated to monitoring nonlinear aspects of wave
hereterm is te iiat cofindue torby sur. zonempation; evolution (e.g. Jaramillo et al., 2006) but as this paper wasthis term is detailed in Kaihatu and Kirby (1995). Comparisons with written the data from these experiments were still being

data yielded excellent results. A nonlinear correction term was processed. A detailed analysis of the performance of the

added to the model by Kaihatu (2001), which led to improved wave model in field data tests will be presented elsewhere. Here, we

shape predictions. We do not employ the surf zone dissipation in will imilscdato te modl cprsont s oe se

this study, but reserve it for analysis in a future study. This equation consistency checks against laboratory data of De Wit (1995),

was numerically solved with a fourth-order Runge-Kutta scheme. who investigated the liquefaction of cohesive sediments in a

Similar to the development ofthe breaking term implementation who ineig condition of coes edients i

in Kirby and Dalrymple (1986), we add the dissipation mechanism flume under varying conditions of waves and currents.

of Ng (2000) directly to the equations in a manner consistent with with a width and depth of 0.8 m. The flume was fitted with a

the conservation of energy flux. Thus (14) becomes: false floor of depth 0.2 m and length 8 m, allowing an overall

.ik )dAn+ maximum depth of I m. In this area dense mud was emplaced.
2,(kCCg).i-Ox + 2i(kCCg) DeDA - 2(kCCg),(kn -k.)A, De Wit (1995) performed tests using several clays; we use his

d (kCCc) 9 [ A,,) I results from Experiment III, in which China clay (kaolinite is a
+i dCCgn An d = 4 principal mineral component) was used. The clay powder was

-- Oy/mixed with 0.5% solution of sodium chloride to a sediment
S(,R.jAtA._tef (k' + knt - kn)dx concentration of 275 kg/M3, then allowed to consolidate for

x t6 days. This resulted in a suspension with a density of about

N-n 1300 kg/M3 . Its viscosity v.=2.7x 10 - 3 m2/s. We assumed
+2 ZSn,tA,An+,ef(k"+1 - k, - k.)dx v, = 1.3 x 10 - 6 m 2/s.

) (18) Two other tests in Experiment III were carried out over this
and (17) becomes: material. The material was then allowed to rest for one day. Test

3 of Experiment III was then conducted. The mud parameters
A (CC -).x A, + D,,A, - i _ and wave conditions used are shown in Table 1. This experiment

A,,, +(2CC), An (+C,)nwas also used to validate a more comprehensive mud dissipation
(2CCg)n 8(kCCg),, model (Winterwerp et al., 2007).

x RAlAn,df(kt + kn_j - k.)dx

N-n kkdx] Table 1
+2 Y AAn+leif(kn+l - k' - Mud parameters and wave condition: Test 3 of Experiment III of De Wit (I 995)

T= 1 (19) p. (kg/. 3) p, (kg/ 3 ) d. (rn) h () H (m) v. (m2 /s) T (s)

where Dn=D((o,k,h) is as in (6). 1000 1300 0.115 0.325 0.045 2.6X10 -3 1.5
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Fig. 3. Comparison of model to data from De Wit (1995), Test 3 of Experiment 1Il. Solid line: waveheights from model. Circles: measurements.

We used a permanent form solution of (17) without the locations by reconstructing the waveforn and determining the
dissipation terms. This solution consisted of seven harmonics distance between crest and trough. The resulting comparison is
phase-locked to the primary mode with amplitudes spanning six shown in Fig. 3; agreement is good and on a par with that shown
orders of magnitude; details on this solution technique are by Winterwerp et al. (2007). This is particularly noteworthy in
provided by Kaihatu (2001). The amplitude series comprising that the depth of the mud layer is roughly 33% of the water
this waveform were input into the model and run over the 8 m depth, which would appear to violate the thin layer assumption
long mud section. Waveheights were calculated at the gage inherent in the formulation of Ng (2000). In fact, the largest of
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the scales (2) used by Ng (2000) is kdm = 0.3, which is not very will investigate the damping of shallow water waves across long
small. However the fact that the model still compared well to transformation distances. Our domain is 1000 m long, with a
data indicates that the scaling assumption is perhaps not that constant depth of 1 m and a grid resolution Ax= 0.025 m. In
restrictive, at least as far as the damping is concerned. We note actual practice this is far finer than required for an accurate
here that the sudden increase in measured waveheight near the solution, but is used to sharply resolve the free surface 1 in a
downwave end of the mud patch was likely caused by wave post-processing step (via Eq. (13)) once the complex amplitudes
reflection from the back of the mud pit. Due to the parabolic A, are calculated by the model. We define a "mud patch" which
nature of the model, this effect cannot be simulated. Using extends from x=300 m to x=800 m. We note here that the
linear long wave theory (Dean and Dalrymple, 1991) the length of the domain, the water depth and the extent of the mud
expected reflection is estimated to be 10% of the incident wave patch were chosen to bring forth particular features of the mud
energy. This slightly overestimates the error between model and dissipation effect on wave-wave interaction, as will be seen.
measurement beyond x= 5 m, possibly due to the use of linear However, these values are comparable to many areas in the
long wave theory for its estimation. world with long shallow shelves and muddy bottoms. For

example, the shelf near Marsh Island in Louisiana, USA is
4.2. Permanent form shallow water waves over aflat bottom - extremely flat and less than 2 m in depth over a distance of
effects of mud around 7 km (Sheremet, personal communication). As before,

reflection of the wave energy is not considered herein. From
Similar to the previous test, our next test involves the linear long wave theory (Dean and Dalrymple, 1991) the

transformation of waves of permanent form over a flat bottom in expected reflection due to the mud patch is estimated to be less
which a region of mud has been placed. However, in this test we than 5% of the incident energy.

01 2 2 2 2 3 3 3 3 3
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200 220 240 260 280 300 320 340 360 380 400
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Fig. 5. One-dimensional cnoidal waves over mud patch: C= 100 case Solid line: y=0.25. Dashed line: y=05. Dash-dot line: y=075. Dotted line: y=0,9.
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We investigate the wave behavior with two different sets of form; the wave retained a mostly-cnoidal shape within and
parameters to describe the mud layer. The first uses a depth of beyond the mud patch even for high y values.
mud of 0.02 m and a mud kinematic viscosity v,, = 1.3 x 10-4, Fig. 5 shows the case for C = 100. The damping is far more
leading to C = 10 if we assume the kinematic viscosity of water dramatic for this case than for C = 10; for the y = 0.9 case the
v,= 1.3 x 10- 6. The dimensionless mud depth d=d.,16. = 1. wave almost disappears entirely. To the extent that the wave
The second case uses vm = 1.3 x 10-2, making C = 100. In order shape is discernible at high y, a somewhat more sinusoidal
to keep the dimensionless mud depth d= I we increase the mud shape is apparent.
layer depth d.,=0.2 m. We will simply refer to them as the The amplitudes of the frequency components of the
C= 10 case and the C= 100 case. For each case we vary the wavefield are shown in Fig. 6 for both the C= 10 and C= 100
density ratio 'y=(0.25,0.5,0.75,0.9), with the most dampening cases, for all values of y used. For both cases, both the initial
occurring for y=0.9, keeping C fixed. condition at x= 0 and the resulting amplitudes at the end of the

Our shallow water incident wave is a permanent form solution mud patch (x= 800 m) are shown. The monotonic decrease in
of (17), with a period T= 10 s and a height H= 0.1 m. With this amplitude with increasing frequency is apparent for the C = 10
wave period, we find that kd =0.04, which is sufficiently small, case at x= 800 m, and is also reflected in the retention of the
The solution is generated via the technique described in Kaihatu cnoidal-like shape of the wavefield (Fig. 4). In contrast, the
(2001) using N= 15 frequency components. C = 100 case shows a distinct non-monotonicity with frequency;

Fig. 4 shows free surface elevations for the Z= 10 case. As the fourth harmonic of the wave (f=0.4 Hz) displays the greatest
expected the greatest amount of dampening was seen when amount of dissipation (relative to the initial amplitude) from the
y = 0.9. However, it is also interesting that the modification to mud patch in the range f< I Hz (kh - 7r). At f< 0.4 Hz, kh
the wavelength by the presence of mud did not cause significant -0.89, which is close to the point of maximum dissipation
detuning of the phase locking required to maintain permanent displayed in Fig. 2.
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y=0.25. Dashed line: y=0.5. Dash-dot line: y=0.75. Dotted line: y=0.9. Top: C= 10. Bottom: C= 100.



760 J.M Kaihatu et a. / Coastal Engineering 54 (2007) 752-764

Interestingly, it is also evident that there is a significant loss the reduction in amplitudes at high frequencies, as seen in the
of amplitude at the high frequencies over the mud patch. The results of the full model. The high frequency amplitudes of the
relative depth kh is around 9 at f= 1.5 Hz, far beyond the reduced nonlinear model are elevated slightly over those of the
kinematical deep water limit. It is thus likely that subharmonic linear model due to superharmonic interactions moving energy
interaction with the lower, actively-damped frequencies is from the low frequencies.
causing this reduction in amplitude, as shown by Sheremet et al.
(2005) for the case of a wave group. To investigate this we re- 5. Two dimensional wave propagation over mud
run the model for the case of y=0.9, using both C= 10 and
C= 100. The first run is linear, with the nonlinearity in (17) Our next set of simulations involves the propagation of a two
deactivated. The second run reduces the nonlinear interactions dimensional wave field over a small patch of mud, with
by deactivating the subharmonic interactions (the first summa- emphasis placed on the refraction and diffraction patterns
tion on the right side of Eq. (17)). If the subharmonic inter- apparent over, and in the lee of, the patch.
actions are in fact causing the depletion of energy in frequencies We use a two-dimensional domain that is 2000 m in the
beyond the deep water limit, we would expect to see similar propagation direction by 600 m in the longshore direction, and
amplitudes between the linear and reduced nonlinear models. use closed lateral boundaries. The extent in the propagation

Fig. 7 compares the resulting evolution characteristics direction should allow enough distance to display significant
between the full model (17), the linearized model, and the diffraction effects in the lee of the mud patch. We use the
reduced nonlinear model (with subharmonic evolution deacti- T= 10 s wave used previously for the one-dimensional case as
vated), for y = 0.9 and both C = 10 and C = 100. There is a close our initial condition. The bathymetry is a constant depth
correspondence between the linear and the reduced nonlinear (h = 1 m) as before. Into this domain we add a region of mud
model at the downwave side of the mud patch, indicating that (200 < Xmud <500 m, 150 m <Ymd < 450 m) with dm = 0.2 m,
the (deactivated) subharmonic interactions are responsible for y =0.9 and C= 100. The grid resolution used is Ax =0.3 m and
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Fig. 7. One-dimensional cnoidal waves over mud patch with y=0.9: amplitudes of wavefield at x=0 (dash-x line) and at downwave end of mud patch (x= 800 m).
Solid line: Eq. (II). Dashed line: Linear model. Dash-dot line: Eq. (II) with only superharmonic interactions. Top: C= 10. Bottom: C= 100.
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Fig. 8. Cnoidal waves propagating over two-dimensional mud patch: overhead view of free surface elevation (crests are in light streaks). Mud patch boundary shown in
dashed lines. Mud parameters: d,.,=0.2 m, y=0.9, 1 100.
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Fig. 9. Cnoidal waves propagating over two-dimensional mud patch: overhead view of free surface elevation (crests are in light streaks). Mud patch boundary shown in
dashed lines, and is reduced in longshore extent. Mud parameters: d. =0.2 m, y =0.9, C= 100.
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Ay=0.6 m; again this is far finer than required for accurate nonlinear interactions (dependent on the wavenumbers of the
solution but serves to help sharpen the depiction of the free surface interacting triads) relative to that with no mud present. The
from the complex amplitudes. (We note here that our resolution dependence of the damping rate (6) on the relative water depth
in the propagation direction Ax is decreased relative to that of kh is shown in Fig. 2; there is an apparent maximum damping
the one-dimensional case due to the extra memory requirements near kh -0.88, though the location of this maximum will
incurred by the expansion to two horizontal dimensions.) change with different h and d.

The result is shown in Fig. 8. There is a very strong attenuation The parabolic nonlinear model of Kaihatu and Kirby (1995)
of the wave elevation through the mud patch and a very long is used as the primary wave model for weakly nonlinear,
shadow zone in the lee of the patch. Additionally, the wave crests fully dispersive waves, with the implementation of the viscous
inside the mud patch appear rounder and less sharp than those damping mechanism of Ng (2000) performed in a manner
outside the patch, likely due to the preferential dampening of the similar to the surf zone dissipation model of Kirby and
higher frequency components of the wave. As the waves Dalrymple (1986). The model was then tested against the
propagate past the mud patch, wave diffraction moves energy experimental data of Dc Wit (1995) and shown to compare well,
into the shadow region. Due to the effect of mud on the despite the thin layer assumption behind the dissipation
wavelength inside the mud region, the wave crests in the lee of the mechanism.
region become discontinuous with those outside it; this effect is Further testing was then performed in both one and two
also seen in wave propagation over two-dimensional varying spatial dimensions, consisting of a permanent form cnoidal
bathymetry (e.g., Berkhoff et al., 1982). Eventually, further wave propagating over mud patches. Two general cases for mud
downwave of the mud region. the bisected wave crests intersect, viscosity were detailed. The first used a mud viscosity
resulting in a hexagonal pattern similar to the intersecting cnoidal vm =1.3 x 0- 4 m2/s, or a viscosity ratio =10. The second
waves generated in the laboratory by Hammack et al. (1989). used v,m = 1.3 x 10-2 m 2/s, or C = 100. For each case the density

In the classic case of wave diffraction around a detached ratio y=(0.2 5,0.5,0. 75 ,0.9 ). The mud depth dm was selected for
breakwater, the extent of the shadow zone is strongly dependent each viscosity case such that the dimensionless ratio d=dm/
on the width of the breakwater (Penney and Price, 1952). We 6, = 1, where 6. is the Stokes boundary layer thickness in the
anticipate that a similar dependence is evident on the longshore mud layer.
dimension of the mud patch. We decrease the longshore extent For the one-dimensional scenario, the cnoidal waveform
of the mud patch considerably (250 m<ymud< 350 m) and retained its general shape for the C=10 case, while for the
rerun the simulation. The result is shown in Fig. 9. Similar to the highly-damped C = 100 case the waveform (to the extent that
problem of a detached breakwater, the longshore extent of the dissipation did not obscure it) appeared to be more sinusoidal.
shadow zone in the lee of the mud patch is closely related to that This indicates that there is some preferential dampening at the
of the mud patch. In contrast to Fig. 8, here we see a much higher frequencies of the wavefield, in line with the kh-
narrower shadow zone. Additionally, well into the lee, the dependent dissipation shown in Fig. 2.
intersection of the crests generate a wave traveling at the mean To elucidate this further, the amplitudes of the wavefield
direction, a nonlinear effect similar to the hexagonal patterns were plotted for the different y values for each viscosity case
seen in Fig. 8. From the point of view of using remote sensing to (Fig. 6), both at the initial condition and at the downwave side
seed inverse models to infer the nature of the bottom, this of the mud patch. While the amplitudes for the =10 case
sensitivity to patch size is encouraging provided there is monotonically decreased with frequency at the end of the mud
sufficient damping of the waves by the bottom mud. patch, the C = 100 case did not, with the fourth harmonic of the

wavefield exhibiting the greatest dissipation relative to the
6. Summary initial condition. For this harmonic kh - 0.89, which is close to

the location of the dissipation maximum shown in Fig. 2.
In this study we have outlined the development of a nonlinear It was also apparent that the frequencies beyond the deep

wave model adapted with a mechanism for dissipation by a thin water limit displayed some degree of attenuation over the mud
layer of viscous mud. The viscous damping mechanism used patch for both viscosity cases, perhaps due to subharmonic
was formulated by Ng (2000) as a boundary-layer reduction of interactions between them and lower, actively-dissipated
the model of Dalrymple and Liu (1978) for damping by a lower frequencies. The one-dimensional model was run again for
layer of viscous mud of arbitrary depth. both C= 10 and C = 100 (y, =0.9). One run was performed with

The dispersion relation (5) resulting from the theory of Ng nonlinearity deactivated, and another with subharmonic inter-
(2000) is complex; the rate of viscous damping is contained in actions (first summation on right side of Eq. (17)) deactivated. It
the imaginary part of the dispersion relation (6), while the effect was shown (Fig. 7) that the amplitudes for both the linear and
of the mud on wave kinematics is contained in the real part (12). reduced nonlinear cases matched very closely and exhibited no
Ng (2000) detailed the damping effect of the theory but did not reduction from the mud patch in the high frequencies. This
investigate the effect on the wavelength. We showed that the indicates that the (deactivated) subharmonic interactions
theory of Ng (2000) does decrease the wavenumber as d, the are responsible for the dissipation of the high frequencies of
normalized mud depth, increases; however, the rate of this the wavefield, even if beyond the deep water limit. This is in
decrease is less than that shown by Dalrymple and Liu (1978). line with the finding of Sheremet et al. (2005) for the case of
Thus, the viscous mud layer will not alter the detuning of the wave groups.



J.M. Kaihatu et al. / Coastal Engineering 54 (2007) 752-764 763

The two-dimensional model was then applied to investigate Estuarine Cohesive Sediment Transport. Coastal and Estuarine Sciences,

wave propagation over a mud patch of limited longshore extent. vol. 42. AGU, pp. 126-148.

Fig. 8 shows a result for a mud patch whose longshore Dalrymple, R.A., Liu, P.L.F., 1978. Waves over soft muds: a two-layer fluid
model. Journal of Physical Oceanography 8, 1121-1131.

dimension is half that of the domain. Very strong damping De Wit, P.J., 1995. Liquifaction of cohesive sediment by waves. Ph.D.

occurs inside the patch, leading to significant diffraction on the dissertation, Delft University of Technology.

lee side. Further downwave, the discontinuity in the wave crest Dean, R.G., Dalrymple, R.A., 1991. Water Wave Mechanics for Engineers and

caused by the mud patch begins to resolve into a hexagonal Scientists, Advanced Series on Ocean Engineering. World Scientific, Singapore.
wave pattern, as the two halves of the bisected wave crest rejoin. Elgar, S., Guza, R.T., 1985. Observations of bispectra of shoaling surface

gravity waves. Journal of Fluid Mechanics 161, 425-448.

Limiting the longshore extent of the mud patch (Fig. 9) leads to Foda, M.A., 1989. Sideband damping of water waves over a soft bed. Journal of

a very different pattern on the downwave side. Since less of the Fluid Mechanics 201, 189-201.

wave crest experiences damping, there is less diffiaction. Foda, M.A., Hunt, J.R., Chou, H.T., 1993. A nonlinear model for the fluidization

Future work with the model will involve surf zone of marine mud by waves. Journal of Geophysical Research 98, 7039-7047.
Forristall, G.Z., Reoce, A.M., 1985. Mearsurements of wave attenuation due to a soft

dissipation and the resultant damping compared to that caused bottom: SWAMP experiment. Journal of Geophysical Research 90,3367-3380.
by mud. Of particular interest would be the alteration of the Freilich, M.H., Guza, R.T., 1984. Nonlinear effects on shoaling surface gravity

velocity moments required for nearshore sediment transport waves. Philosophical Transactions of the Royal Society of London A 311,

calculations. We also anticipate the opportunity to perform 1-41.

comparisons with field data. Gade, H.G., 1958. Effects of a nonrigid, impenneable bottom on place waves in
shallow water. Journal of Marine Research 16, 61-82.

Hammack, J., Scheffnier, N., Segur, H., 1989. Two-dimensional periodic waves
Acknowledgments in shallow water. Journal of Fluid Mechanics 209, 567-589.

Herbers, T.H.C., Burton, M.C., 1997. Nonlinear shoaling of directionally spread

Support was provided by the Office of Naval Research waves on a beach. Journal of Geophysical Research 102, 21101-21114.

through both the NRL 6.1 ARI "Coastal Dynamics in Hill, D.F., Foda, M.A., 1998. Subharmonic resonance of oblique interfacial

Heterogeneous Sedimentary Environments" (JMK and KTH; waves by a progressive surface wave. Proceedings, Royal Society of London
A 454, 1129-1144.

Program Element 61153N) and the Coastal Geosciences Hsiao, S.V., Shemdin, O.H., 1980. Interaction of ocean waves with a soft

Program (AS; award N00014-03-1-0200). Dr. Johan C. bottom. Journal of Physical Oceanography 10, 605-610.

Winterwerp of WL Delft Hydraulics kindly provided both a Jamali, M., Lawrence, G.A., Seymour, B., 2003. A note on the resonant

preprint of the Winterwerp et al. paper and a copy of the thesis interaction between a surface wave and two interfacial waves. Journal of
Fluid Mechanics 491, 1-9.

by De Wit. The authors thank Drs. Jayarm Veeranony, Joseph Jaramillo, S., Sheremet, A., Allison, M.A., Dartez, S., 2006. Coupled evolution

Calantoni, Nathaniel Plant and Carolus Cobb (all of the Naval of waves and fluid mud layers. Poster presented at American Geophysical

Research Laboratory) for useful discussions. In particular, we Union Ocean Sciences Meeting, Honolulu, HI.

thank Mr. W. Erick Rogers of the Naval Research Laboratory Jiang, F., Mehta, A.J., 1995. Mudbanks of the southwest coast of India IV: mud

for correcting our initial interpretation of Fig. 2. This is NRL viscoelastic properties. Journal of Coastal Research II, 918- 926.

Publication NRL/JA/7320-06-6266 and has been approved for Jiang, F., Mehta, A.J., 1996. Mudbanks of the southwest coast of India V: wave
attenuation. Journal of Coastal Research 12, 890-897.

public release; distribution unlimited. Jiang, L., Zhao, Z., 1989. Viscous damping of solitary waves over fluid-mud

seabeds. Journal of Waterway, Port, Coastal and Ocean Engineering (ASCE)
References 115, 345-362.

Jiang, L., Kioka, W., Ishida, A., 1990. Viscous damping of cnoidal waves over
Agnon, Y., Sheremet, A., 1997. Stochastic nonlinear shoaling of directional fluid-mud seabed. Journal of Waterway, Port, Coastal and Ocean

spectra. Journal of Fluid Mechanics 345, 79-99. Engineering (ASCE) 116, 470-491.
Agnon, Y., Sheremet, A., 2000. Stochastic evolution models for nonlinear Kaihatu, J.M., 2001. Improvement of parabolic nonlinear dispersive wave

gravity waves over uneven topography. In: Liu, P.L.-F. (Ed.), Advances in model. Journal of Waterway, Port, Coastal and Ocean Engineering (ASCE)
Coastal and Ocean Engineering, vol. 6. World Scientific. 127, 113-121.

Agnon, Y., Sheremet, A., Gonsalves, J., Stiassnie, M., 1993. Nonlinear evolution Kaihatu, J.M., Kirby, J.T., 1995. Nonlinear transformation of waves in finite
of a unidirectional shoaling wave field. Coastal Engineering 20, 29-58. water depth. Physics of Fluids 7, 1903-1914.

Ardhuin, F., Drake, T.G., Herbers, T.H.C., 2002. Observations of wave- Kirby, J.T., Dalrymple, R.A., 1986. Modeling waves in surf zones and around
generated vortex ripples on the North Carolina continental shelf. Journal of islands. Journal of Waterway. Port Coastal and Ocean Engineering (ASCE)
Geophysical Research 107. doi: 10. 1029/1001 JC000986. 112, 78-93.

Ardhuin, F., O'Reilly, W.C., Herbers, Th.C., Jessen, P.F., 2003. Swell Kirby, J.T., Kaihatu, J.M., 1996. Structure of frequency domain models for
transformation across the continental shelf. Part 1: attenuation and swell random wave breaking. In: Edge, B.L. (Ed.), 25th International Conference
broadening. Journal of Physical Oceanography 33, 1921-1939. on Coastal Engineering. ASCE, Orlando, FL, pp. 1144-1155.

Berkhoff, J.C.W., 1972. Computation of combined refraction-diffraction. 13th Lee, S.C. 1995. Response of mud profiles to waves. Ph.D. dissertation, Department
International Conference on Coastal Engineering. ASCE, Vancouver, BC, of Civil and Coastal Engineering, University of Florida, Gainesville. FL.
pp. 471-490. Liu, P.L.F., Yoon, S.B., Kirby, J.T., 1985. Nonlinear refraction- diffraction of

Berkhoff, J.C.W., Booij, N., Radder, A.C., 1982. Verification of numerical waves in shallow water. Journal of Fluid Mechanics 153, 184-201.
wave propagation models for simple harmonic linear waves. Coastal Macpherson, H., 1980. The attenuation of water waves over a non-rigid bed.
Engineering 6, 255-279. Journal of Fluid Mechanics 97, 721-742.

Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third generation wave model for Mathew, J. (1992). Wave-mud interaction in mud banks. Ph.D. dissertation,
coastal regions. I. Model description and validation. Journal of Geophysical Cochin University of Schience and Technology, Cochin, India.
Research 104, 7649- 7666. Mehta, A.J., Srinivas, R., 1993. Observations of entrainment of fluid mud by shear

Chou, H.T., Foda, M.A., Hunt, J.R., 1993. Rheological response of cohesive flow. In: Mehta, A.J. (Ed.), Nearshore and Estuarine Cohesive Sediment
sediments to oscillatory forcing. In: Mehta, A.J. (Ed.), Nearshore and Transport. American Geophysical Union, Washington DC, pp. 224-246.



764 J.M. Kaihatu et at / Coastal Engineering 54 (2007) 752-764

Mei, C.C., Liu, K.F., 1987. A Bingham-plastic model for a muddy seabed under Tubman, M.W., Suhayda, J.N., 1976. Wave action and bottom movements in
long waves. Journal of Geophysical Research 92, 14581-14594. fine sediments. Proceedings, 15th International Conference on Coastal

Ng, C.O., 2000. Water waves over a muddy bed: a two-layer Stokes' boundary Engineering, Honolulu, HI, pp. 1168-1183.
layer model. Coastal Engineering 40, 221-242. Wells, J.T., Coleman, J.M., 1981. Physical processes and fine-grained seiment

Penney, W.G., Price, A.T., 1952. The diffraction of sea waves and the shelter dynamics, coast of Surinam, South America. Journal of Sedimentary
afforded by breakwaters. Philosophical Transactions of the Royal Society of Petrology 15, 1053-1068.
London. Series A 244, 236-253. Whitham, G.B., 1974. Linear and nonlinear waves. Wiley-Interscience, New

Peregrine, D.H., 1967. Long waves on a beach. Journal of Fluid Mechanics 27, York.
815-827. Winterwerp, J.C., de Graff, R.F., Groeneweg, J., Luijendijk, A.P., 2007.

Radder, A.C., 1979. On the parabolic equation method for water wave Modeling of wave damping at Guyana mud coast. Coastal Engineering 54,
propagation. Journal of Fluid Mechanics, 95, 159-176. 249-261.

Sheremet, A., Stone, G.W., 2003. Observations of nearshore wave dissipation Yamamoto, T., Takahashi, S., 1985. Wave damping by soil motion. Journal of
over muddy sea beds. Journal of Geophysical Research 108, 3357-3368. Waterway, Port, Coastal and Ocean Engineering (ASCE) III, 62-77.

Sheremet, A., Mehta, A.J., Kaihatu, J.M., 2005. Wave-sediment interaction on a Yamamoto, T., Koning, H.L., Selhneiher, H., van Hijum, E.V., 1978. On the
muddy shelf. Proceedings, Fifth International Symposium on Ocean Wave response of a poro-elastic bed to water waves. Journal of Fluid Mechanics
Measurement and Analysis, Madrid, Spain, to appear. 87, 193-206.



REPOT D CUM NTATON AGEForm Appro ved
REPOT D CUMNTAIONPAG OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information, Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate 10704-0188). Respondents should be aware
that notwithstanding any other provision of law. no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB

control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY) Z2. REPORT TYPE 3. DATES COVERED (From - To)

04-06-2008 Journal Article1

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Model for the Propagation of Nonlinear Surface Waves Over Viscous Muds

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

0601153N

6. AUTHOR(S) 5d. PROJECT NUMBER

James M. Kaihatu, Alexandru Sheremet, K. Todd Holland

5e. TASK NUMBER

5f. WORK UNIT NUMBER

73-8580-06-5

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Research Laboratory REPORT NUMBER

Oceanography Division NRL/JA/7320-06-6266

Stennis Space Center, MS 39529-5004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Office of Naval Research ONR
800 N. Quincy St.

Arlington, VA 22217-5660 11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The effect of'a thin viscous fluid -mud layer on nearshore nonlinear wave -wave interactions is studied using a parabolic frequency-domain
nonlinear wave model, modified to incorporate a bottom dissipation mechanism based on a viscous boundary layer approach. The boundary-layer
fortnmulation allows for explicit calculation of the mud-induced wave damping rate. The model performed well in tests based on laboratory data.
Numerical tests show that damping of high frequency waves occurs, mediated by "difference" nonlinear interactions. Simulations of 2-dimensional
wave propagation over a mud "patch" of finite extent show that the wave dissipation causes significant downwave diffraction effects.

15. SUBJECT TERMS

viscous muds, Boussinesq, propagation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF James Kaihatu
PAGES

Unclassified Unclassified Unclassified UL 13 19b. TELEPHONE NUMBER (Include area code)

228-688-5710
Standard Form 298 lRev. 8/98)
Prescribed by ANSI Std. Z39.18


